Intrinsic α-helical and β-sheet conformational preferences: a computational case study of alanine.

نویسندگان

  • Diego Caballero
  • Jukka Määttä
  • Alice Qinhua Zhou
  • Maria Sammalkorpi
  • Corey S O'Hern
  • Lynne Regan
چکیده

A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle ( ϕ-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (NCα C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the "bridge" region of ϕ-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between ϕ-ψ conformations and τ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trifluoroethanol Modulates Amyloid Formation by the All α-Helical URN1 FF Domain

Amyloid fibril formation is implicated in different human diseases. The transition between native α-helices and nonnative intermolecular β-sheets has been suggested to be a trigger of fibrillation in different conformational diseases. The FF domain of the URN1 splicing factor (URN1-FF) is a small all-α protein that populates a molten globule (MG) at low pH. Despite the fact that this conformati...

متن کامل

Helix stability of oligoglycine, oligoalanine, and oligo-β-alanine dodecamers reflected by hydrogen-bond persistence.

Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α- and β-amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β-amino acids are experimentally more stable than those formed by α-amino acids. This is paradoxical becaus...

متن کامل

Conformational Preference of ‘CαNN’ Short Peptide Motif towards Recognition of Anions

Among several 'anion binding motifs', the recently described 'C(α)NN' motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring 'C(α)NN' motif at the N-terminus of a designed he...

متن کامل

Designing hybrid foldamers: the effect on the peptide conformational bias of β- versus α- and γ-linear residues in alternation with (1R,2S)-2-aminocyclobutane-1-carboxylic acid.

Several oligomers constructed with (1R,2S)-2-aminocyclobutane-1-carboxylic acid and glycine, β-alanine, and γ-amino butyric acid (GABA), respectively, joined in alternation have been synthesized and studied by means of NMR and CD experiments as well as with computational calculations. Results account for the spacer length effect on folding and show that conformational preference for these hybri...

متن کامل

Selective DMSO-induced conformational changes in proteins from Raman optical activity.

The function of a protein is determined by its structure, which is intrinsically related to its solvent environment. Based on this paradigm, there has been a great deal of interest in the role that non-aqueous solvents play in regulating protein structure, with some debate in the literature regarding dimethyl sulfoxide (DMSO). Thus, in this work we have used Raman and Raman optical activity (RO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2014